

AQA GCSE

Year 11 H Biology Knowledge Organiser

Bacterial cells are much smaller than plant and animal cells

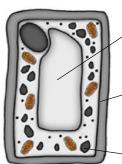
AQA Cell Structure

Prokaryotes simpler organisms

carry

electrical

signals


fertilise an

egg

contract to

allow

movement

objective lens

stage

light source

permanent vacuole	contains cell sap	keeps cell turgid, contains sugars and salts in solution
cell wall	made of cellulose	supports and strengthens the cell
chloroplast	site of photosynthesis	contains chlorophyll, absorbs light energy

how a cell changes and becomes **specialised Undifferentiated** call are called **STEM** cells

Cell differentiation

root hair

nerve

sperm

muscle

specialised animal cells

specialised plant cells

Specialised cells

absorb water and minerals from soil

hair like projections to increase the surface area

TRANSPIRATION - dead cells

cell walls toughened by lignin

flows in one direction

long branched connections and

insulating sheath

streamlined with a long tail

acrosome containing enzymes

large number of mitochondria

contains a large number of

mitochondria

long

magnification M = size of image I real size of the object A

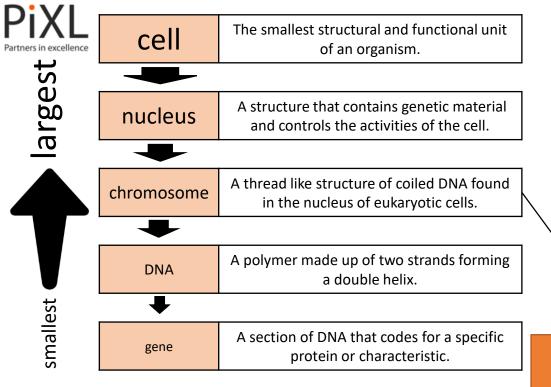
Microscopy

xylem carry water and minerals

phloem carry glucose

TRANSLOCATION - living cells cells have end plates with holes flows in both directions

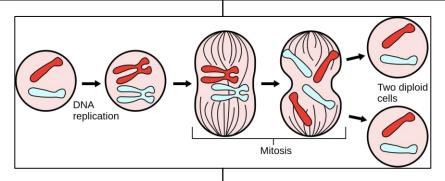
early stages of development only for repair and replacement plant cell differentiation


all stages of life cycle the stem cells are grouped together in meristems

eyepiece lens

focusing wheel

Feature	Light (optical) microscope	Electron microscope
Radiation used	Light rays	Electron beams
Max magnification	~ 1500 times	~ 2 000 000 times
Resolution 200nm		0.2nm
Size of microscope Small and portable		Very large and not portable
Cost	~£100 for a school one	Several £100,000 to £1 million plus


PREFIXES				
Prefix	Multiple	Standard form		
centi (cm)	1 cm = 0.01 m	x 10 ⁻²		
milli (mm)	1 mm = 0.001 m	x 10 ⁻³		
micro (μm)	1 μm = 0.000 001 m	x 10 ⁻⁶		
nano (nm)	1nm = 0.000 000 001 m	x 10 ⁻⁹		

Cells divide in a series of stages. The genetic material is doubled and then divided into two identical cells.

MITOSIS AND THE CELL CYCLE

Stage 1	Growth	Increase the number of sub-cellular structures e.g. ribosomes and mitochondria.
Stage DNA DNA replicates to chromosome.		DNA replicates to form two copies of each chromosome.
Stage 3	Mitosis	One set of chromosomes is pulled to each end of the cell and the nucleus divides. Then the cytoplasm and cell membranes divide to form two cells that are identical to the parent cell.

Mitosis occurs during growth, repair, replacement of cells.

Asexual reproduction occurs by mitosis in both plants

& simple animals.

	Small intestines	Villi – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
Gills in fish Gills in fish Gills in fish Gill filaments and lamella – increase surface area, Good blood supmaintain concentration gradient, Thin membranes – short diffusion Roots Root hair cells - increase surface area.		Alveoli— increase surface area, Good blood supply — to maintain concentration gradient, Thin membranes — short diffusion distance.
		Gill filaments and lamella – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
		Root hair cells - increase surface area.
		Large surface area, thin leaves for short diffusion path, stomata on the lower surface to let O_2 and CO_2 in and out.

ADAPTATIONS FOR DIFFUSSION

Transport in cells

The greater the difference in concentrations the faster the rate of diffusion.

minerals.

PiXL

Diffusion No energy required	Movement of particles in a solution or gas from a higher to a lower concentration	E.g. O_2 and CO_2 in gas exchange, urea in kidneys. Factors that affect the rate are concentration, temperature and surface area.
Osmosis <u>No</u> energy	Movement of water from a dilute solution	E.g. Plants absorb water from the soil by osmosis through their root hair cells. Plants use water for

Active	Movement of particles	
transport	from a dilute solution	
ENERGY	to a more	
required	concentrated solution	

to a more

concentrated solution

E.g. movement of mineral ions into roots of plants and the movement of glucose into the small intestines.

several vital processes including

photosynthesis and transporting

Human Embryonic stem cells	Can be cloned and made to differentiate into most cell types	Therapeutic cloning uses same genes so the body does not reject the tissue. Can be a risk of infection
Adult bone marrow stem cells	Can form many types of human cells e.g. blood cells	Tissue is matched to avoid rejection, risk of infection. Only a few types of cells can be formed.
Meristems (plants)	Can differentiate into any plant cell type throughout the life of the pant.	Used to produce clones quickly and economically, e.g. rare species, crop plants with pest /disease resisitance

required

Treatment with stem cells may be able to help conditions such as diabetes and paralysis. Some people object to the use of stem cells on ethical or religious grounds

AQA

Cell Biology 2

Cell division

STEM CELLS

Undifferentiated cell of

an organism

Divides to form more cells of the

same type, and can differentiate

to form many other cell types.

Enzymes catalyse (increase the rate of) specific reactions in living organisms

The 'lock and key theory' is a simplified model to explain enzyme action

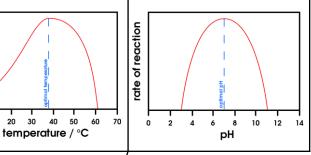
Enzymes catalyse specific reactions in living organisms due to the shape of their active site

Digestive enzymes speed up the conversion of large insoluble molecules (food) into small soluble molecules that can be absorbed into the bloodstream

The activity of enzymes is affected by changes in temperature and pH

Large changes in temperature or pH can stop

the enzyme from working (denature)


Enzyme changes shape (denatures) the

substrate no longer fits the active site.

Enzymes activity has an optimum temperature

rate of reaction

Enzyme activity has an optimum pH

pH too high or too

low

Enzymes in digestion

The human digestive system

AQA GCSE
ORGANISATION
Part 1

Principles of organisation

An organ system in which organs work together to digest and absorb food.

More energy

consumed in food and drink than used

obesity

Linked to increased rates

Non-communicable

Food tests

Linked to increased rates of cardiovascular disease and development of diabetes type 2.

Biuret

liver

oesophagus

pancreas

intestines

large

Mauve or purple solution.

mouth

small

intestines

gall bladder

Biuret reagent

Sugars (glucose)

Benedicts' test
Orange to brick red precipitate.

Starch
Iodine test
Turns black.

Carbohydrases (e.g. amylase)

Proteases

Lipases

Bile (not an enzyme)

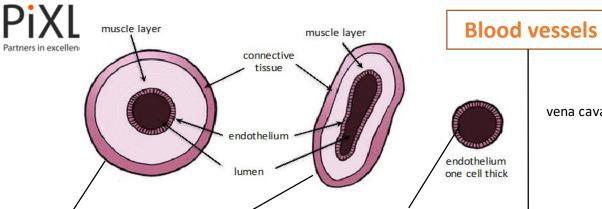
Made in salivary glands, pancreas, small intestine

Temperature too high

Break down carbohydrates to simple sugar (e.g. amylase breaks down starch to glucose).

Made in stomach, pancreas

Break down protein to amino acids.


Made in pancreas (works in small intestine)

Break down lipids (fats) to glycerol and fatty acids).

Made in liver, stored in gall bladder. Emulsifies lipids to increase surface area to increase the rate of lipid break down by lipase. Changes pH to neutral for lipase to work The products of digestion are used to build new carbohydrates, lipids and proteins. Some glucose is used for respiration.

Cells, tissues, organs and systems

The basic building blocks Cells e.g. muscle cells of all living organisms. A group of cells with a e.g. muscle **Tissues** similar structure and tissue function. Aggregations (working together) of tissues **Organs** e.g. the heart performing a specific function. Organs working together e.g. the to form organ systems, Organ circulatory which work together to systems system form an organism.

Artery	Vein	Capillary
Carry blood away from the heart	Carry blood to the heart	Connects arteries and veins
Thick muscular walls, small lumen, carry blood under high pressure, carry oxygenated blood (except for the pulmonary artery).	Thin walls, large lumen, carry blood under low pressure, have valves to stop flow in the wrong direction, carry deoxygenated blood (except for the pulmonary vein).	One cell thick to allow diffusion, Carry blood under very low pressure.

pulmonary artery vena cava pulmonary atrium right atrium right ventricle -Heart

The heart is an organ that pumps blood around the body in a double circulatory system

functions	Right ventricle	Pumps blood to the lungs where gas exchange takes place.
different f	Left ventricle	Pumps blood around the rest of the body.
Different structure in the heart have different functions	Pacemaker (in the right atrium)	Controls the natural resting heart rate. Artificial electrical pacemakers can be fitted to correct irregularities.
structure	Coronary arteries	Carry oxygenated blood to the cardiac muscle.
Different	Heart valves	Prevent blood in the heart from flowing in the wrong direction.

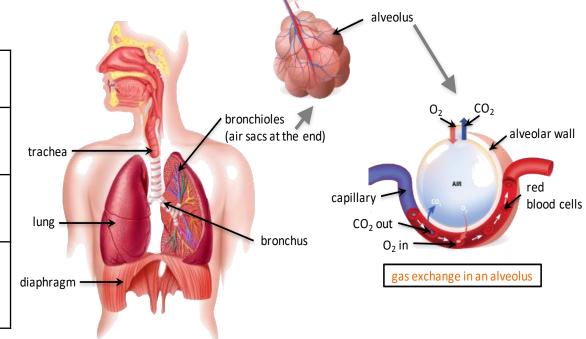
PiXL

Blood

Blood is a tissue consisting of plasma, in which blood cells, white blood cells and platelets are suspended

Plasma (55%)	Pale yellow fluid	Transports CO ₂ , hormones and waste.
Red blood cells (45%)	Carries oxygen	Large surface area, no nucleus, full of haemoglobin.
White blood cells (<1%)	Part of the immune system	Some produce antibodies, others surround and engulf pathogens.
Platelets (<1%)	Fragments of cells	Clump together to form blood clots.

AQA GCSE ORGANISATION part 2


Lungs and gas exchange

The heart pumps low oxygen/high carbon dioxide blood to the lungs

left ventricle

coronary arteries

	Trachea	Carries air to/from the lungs	Rings of cartilage protect the airway.
	Bronchioles	Carries air to/from the air sacs (alveoli)	Splits into multiple pathways to reach all the air sacs.
	Alveoli	Site of gas exchange in the lungs	Maximises surface area for efficient gas exchange.
	Capillaries	Allows gas exchange between into/out of blood	Oxygen diffuses into the blood and carbon dioxide diffuses out.

Partners in excelle	Heart failure can be treated with a transplant or artificial heart			neart	AQA GO	SE	ORGAN	ISATION part 3	Plan	t tissues	PiXL		
Disease	Cause	Effect	Treatment	an						· ·	op layer of the leaf)	Reduces water los	s from the leaf
зе (СНD)	substances arteries osis)	cannot get ile.	he n it up. I	Plant organ	cuticle upper epidermis palisade mesophyll		ch va va va va va va va va va va va va va	loroplast cuole icleus Il wall toplasm	Epiderma tissues		s and stomata	control water loss	and close the stomata to and allow for gas and carbon dioxide).
ıry heart disease	up for fatty ne coronary atheroscler	Oxygen-ated blood ca to the cardiac muscle	Stents: inserted into the blocked artery to open it Statins: lower harmful cholesterol.		plant plant critical should be shoul	quard cell stoma	flow is from roots to leaves		Palisade mesophy	Palis	ade cells	are packed with cl	surface of the leaf that hloroplasts that contain adaptations maximize
Coronary	A build in t				for training the	roots to leaves — water and —			Spongy mesophy	Air spaces in th	e leaf between cells		area for gas exchange oxide can diffuse into g cells.
Faulty heart valves	ives don't open close properly	Blood can leak or flow in the wrong direction	Biological valve transplant or a mechanical valve can be inserted	200	plant organ system for of substances around	one way flow — walls toughened with lignin	† † † † † † † † † † † † † † † † † † †		xylem	lignin ad transportatio	strengthened by apted for the on of water in the ation stream	•	of water and mineral ts to the stem and the
	Non-com		ple disease	es E	The roots, of substa				phloem	cell to the next t	s from one phloem hrough pores in the d walls	leaves to the rest	ed sugars from the of the plant for storage (translocation).
	to uncontro	lled growth	DNA that lead h and division						Meristen tissue	·	and shoot tips) are uding root hair cells	area for the uptak	ve an increased surface te of water by osmosis, by active transport.
Benigi tumou Maligno	body (u membra	ed in one are sually by a ane) – not car	ncer. oread to		Flower	eaf	glucose solution		neasure the lost over	eter is used to amount of water time (rate of	ranspiration	Effect of Humidity on Plant Transpirat	ation
tumou	ir i	t parts of the condary tume	·				cells have end pla with holes	ates		spiration)	Rate of T	is greater outleaf	Effect of Wind Velocity on Plant Transpiration
Some cancers have genetic risk factors. Carcinogens and ionising radiation increase the risk of cancer by changing / damaging DNA					Iran	Spiration The rate at which		Humidity	anspiration Rate				
heart/ and cer cand drink diet,	factors for flung disease rtain types of cer include sing alcohol, obesity and moking	fact also the live the of u	ese risks tors can o affect e brain, er and e health unborn abies	Room	cytoplasm		permanent vacuole cell wall cell membrane	Tran	spiration	water is lost from the leaves of a plant. The transpiration stream is the column of water moving through the roots, stem and leaves	Temperature, humidity, air movement and light intensity affect the rate of transpiration.	Effect of Temperature on Plant Temperature on Plant	The shape of the graph for light intensity is the same for temperature (energy)

better hope – brighter future

PIXL Partners in excellence	Phagocytes	Phagocytosis	Phagocytes engulf the pathogen them.
phagosome pragosomes come pragosomes come come come come come come	Lymphocytes	Antibody production	Specific antibodies destroy the particle takes time so an infection can or is infected again by the same particle lymphocytes make antibodies antibodies destroy the particle antibodies and antibodies antibodies and antibodies antibodies and antibodies antibodie
bactering receptors control of the second of		Antitoxin production	Antitoxin is a type of antibody p counteract the toxins produced

Identification

Reference using

or website,

kit using

monoclonal

antibodies.

gardening manual

laboratory test for

pathogens, testing

/	Phagocytes	Phagocytosis	Phagocytes engulf the pathogens and digest them.	
exocytosis	Lymphocytes	Antibody production	Specific antibodies destroy the pathogen. This takes time so an infection can occur. If a person is infected again by the same pathogen, the lymphocytes make antibodies much faster.	
		Antitoxin production	Antitoxin is a type of antibody produced to counteract the toxins produced by bacteria.	

Antigens (surface protein) White blood cells are part of the immune

Human

defence

systems

Pathogens are identified by white blood cells by the different proteins on their surfaces ANTIGENS.

ecific ways getting in	3	Nose	Nasal hairs, sticky mucus and cilia prevent pathogens entering through the nostrils.
several non sp om pathogens		Trachea and bronchus (respiratory system)	Lined with mucus to trap dust and pathogens. Cilia move the mucus upwards to be swallowed.
The human body has several non specific ways of defending itself from pathogens getting in		Stomach acid	Stomach acid (pH1) kills most ingested pathogens.
		Skin	Hard to penetrate waterproof barrier. Glands secrete oil which kill microbes

AQA GCSE INFECTION AND RESPONSE part 1

Plants have several ways of defending themselves from pathogens and animals

Physical	Mechanical			
Thick waxy layers, cell walls stop pathogen entry	Thorns, curling up leaves to prevent being eaten			
Chamian				

Chemical

Antibacterial and toxins made by plant

Pathogens may infect plants or animals and can be spread by direct contact, water or air

systems

defence

Non-specific

Immune system

	Pathogen	Disease	Symptoms	Method of transmission	Control of spread			
	Virus	Measles	Fever, red skin rash.	Droplet infection from sneezes and coughs.	Vaccination as a child.			
	Virus	HIV	Initially flu like systems, serious damage to immune system.	Sexual contact and exchange of body fluids.	Anti-retroviral drugs and use of condoms.			
	Virus	Tobacco mosaic virus	Mosaic pattern on leaves.	Enters via wounds in epidermis caused by pests.	Remove infected leaves and control pests that damage the leaves.			
	Bacteria	Salmonella	Fever, cramp, vomiting, diarrhoea.	Food prepared in unhygienic conditions or not cooked properly.	Improve food hygiene, wash hands, vaccinate poultry, cook food thoroughly.			
	Bacteria	Gonorrhoea	Green discharge from penis or vagina.	Direct sexual contact or exchange of body fluids.	Use condoms. Treatment using antibiotics.			
_	Protists	Malaria	Recurrent fever.	By an animal vector (mosquitoes).	Prevent breeding of mosquitoes. Use of nets to prevent bites.			
	Fungus	Rose black spot	Purple black spots on leaves.	Spores carried via wind or water.	Remove infected leaves. Spray with fungicide.			

Nitrate ions needed for protein synthesis – lack of nitrate = stunted growth.

Detection and identification of plant diseases (bio only)

Detection

Stunted growth

Spots on leaves

Area of decay

growths

Malformed

stem/leaves

Discolouration

Presence of pests

Magnesium ions needed to make chlorophyll – not enough leads to chlorosis - leaves turn yellow.

Bacteria may produce toxins that damage tissues and make us fell ill

Viruses	Bacteria (prokaryotes)	Protists (eukaryotes)	Fungi (eukaryotes)
e.g. cold, influenza, measles, HIV, tobacco mosaic virus	e.g. tuberculosis (TB), Salmonella, Gonorrhoea	e.g. dysentery, sleeping sickness, malaria	e.g. athlete's foot, thrush, rose black spot
DNA or RNA surrounded by a protein coat	No membrane bound organelles (no chloroplasts, mitochondria or nucleus). Cell wall. Single celled organisms	Membrane bound organelles. Usually single celled.	Membrane bound organelles, cell wall made of chitin. Single celled or multi- cellular

Pathogens are microorganisms that cause infectious disease

Pathogens

Communicable diseases

Viruses live and reproduce inside cells causing damage

Most new drugs are synthesised by chemists in the pharmaceutical industry.

	Traditionally drugs were extracted from plants and microorganisms						
	Digitalis	Aspirin	Penicillin				
	Extracted from foxglove plants and used as a heart drug	A painkiller and anti- inflammatory that was first found in willow bark	Discovered by Alexander Fleming from the <i>Penicillium</i> mould and used as an antibiotic				
Ī	ANNE						

Drugs have to be tested and trialled before to check they are safe and effective

v are	Efficacy	Make sure the drug works	
/ drugs a tensively sted for:	Toxicity	Check that the drug is not poisonous	
New exte	Dose	The most suitable amount to take	

Preclinical trials - using cells, tissues and live animals - must be carried out before the drug can be tested on humans.

Clinical trials use healthy volunteers and patients

Stage 1	Stage 2	Stage 3	Stage 4
Healthy volunteers try small dose of the drug to check it is safe record any side effects	A small number of patients try the drug at a low dose to see if it works	A larger number of patients; different doses are trialled to find the optimum dose	A double blind trial will occur. The patients are divided into groups. Some will be given the drug and some a placebo.

Antibiotics and painkillers

Bacteria can mutate

Sometimes this makes them resistant to antibiotic drugs.

Discovery and drug development

Double blind trial: patients and scientists do not know who receives the new drug or placebo until the end of the trial. This avoids bias.

Antibiotics have greatly reduced deaths from infectious bacterial disease

Kill infective bacteria inside the body. Specific bacterial antibiotics e.g. penicillin infections require specific antibiotics.

Painkillers Drugs that are used to treat the e.g. aspirin, and other paracetamol, symptoms of a disease. They ibuprofen do not kill pathogens medicines

Vaccination

Used to immunise a large proportion of the population to prevent the spread of a pathogen

White blood cells detect pathogens in the vaccine. Antibodies are released into the

Re-infection by the same pathogen

1st infection

by

pathogen

White blood cells detect pathogens. Antibodies are made much faster and in larger amounts.

Created more side effects than expected (fatal in some cases) and are not as widely used as everybody hoped when first developed.

blood.

A placebo can look identical to the new

AQA

INFECTION

AND

RESPONSE

Small amount

of dead or

inactive form of the

pathogen

Vaccination

drug but contain no active ingredients

	inside	cells
ect pathogens in the	of nd	eq

A person is unlikely to suffer the symptoms o the harmful disease an

PiXL

Antibiotics

cannot be

use to

treat viral

pathogens

It is difficult to

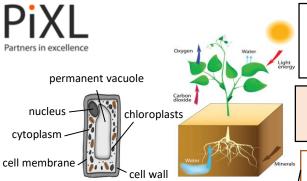
develop drugs

to kill viruses

without harming body

tissues

because


viruses live

and

reproduce

it's spread in a population is prevented

Monoc	Monoclonal antibodies can be used in a variety of ways							
Diagnosis	Detecting pathogens	Detecting molecules	Treatment					
e.g. pregnancy test – measure the level of hormones	Can detect very small quantities of chemicals in the blood	Fluorescent dye can be attached so it can be seen inside cells or tissues	Bound to radioactive substance, toxic drug or chemical Cancer cells are targeted to normal body cells are unharmed					

Respiration, stored as insoluble starch, fats or oils for storage, cellulose for cell walls, combine with nitrates from the soil to form amino acids for protein synthesis

Plants use the glucose produced in photosynthesis in a variety of ways

Photosynthetic reaction

The plant manufactures glucose from carbon dioxide and water using energy transferred from the environment to the chloroplasts by light

	Plants make use
sis	of light energy
the	from the
syn	environment
Photosynthesis	(ENDOTHERMIC)
	to make food
	(glucose)

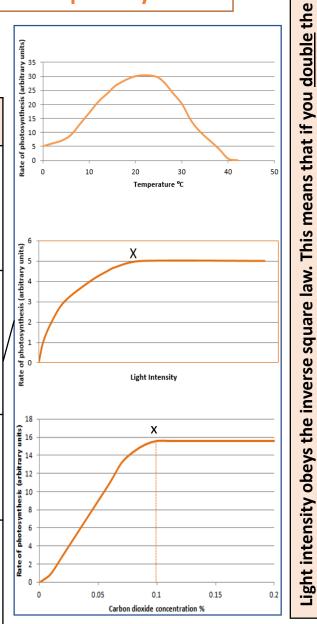
→ Oxygen + Glucose Carbon dioxide + Water

> \rightarrow O_2 + $C_6H_{12}O_6$ H_2O

The rate of photosynthesis is affected by temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll

	Factor How the rate is affected		Limiting factors (why the rate stops going up)	
/nthesis	Temperature	As the temperature of the environment the plant is in increases rate of photosynthesis increases (up to a point) as there is more energy for the chemical reaction.	Photosynthesis is an enzyme controlled reaction. If the temperature increases too much, then the enzymes become denatured and the rate of reaction will decrease and stop	
Factors affecting the rate of photosynthesis	Light intensity	Light intensity increases as the distance between the plant and the light sources increases. As light intensity increases so does the rate of photosynthesis (up to a point) as more energy is available for the chemical reaction.	At point X another factor is limiting the rate of photosynthesis. This could be carbon dioxide concentration, temperature or the amount of chlorophyll	
Factors affecti	Carbon dioxide concentration	Carbon dioxide is needed for plants to make glucose. The rate of photosynthesis will increase when a plant is given higher concentrations of carbon dioxide (up to a point).	At point X another factor is limiting the rate of photosynthesis. This could be light intensity, temperature or the amount of chlorophyll	
	Amount of chlorophyll	Chlorophyll is a photosynthetic pigment that absorbs light and allows the reaction between water and carbon dioxide to occur (photosynthesis)	Another factor could limit the rate of photosynthesis. This could be light intensity, temperature or the carbon dioxide concentration	

greenhouses to reduce limiting factors can improve crop yields Used to provide optimum Heating temperatures for maximum plant Control conditions in growth. Enhances the natural sunlight **Artificial** especially overnight and on lighting cloudy days. **Extra** Gas can be pumped into the air carbon inside the greenhouse. dioxide


Growers must balance the economics of additional costs of controlling the conditions to maximise a profit.

Rate of photosynthesis HT Only

AQA GCSE BIOENERGETICS part

Rate of photosynthesis

distance between the plant and the light source you quarter the light intensity

Graph lines C and D: If temperature is increased by 10°C then a slight increase in rate of photosynthesis occurs.

tissue can be damaged when carbon dioxide concentrations exceed 0.1%

limited by temperature and/or amount of chlorophyll. Plant

If carbon dioxide concentration is increased from 0.01% to 0.1% then a large increase in rate occurs

limiting factor **Graph Lines A and B**:

Explain graphs of

two or three

factors and decide

which is the

C: 25°C and 0.01% CO₂ D: 15°C and 0.01% CO₂ A: 25°C and 0.1% CO₂ B: 15°C and 0.1% CO₂ Light Intensity Rate of photosynthesis

temperature are increased the Graph lines A and D: If carbon increases significantly up to a dioxide concentration and rate of photosynthesis point. up to a point.

During long periods of vigorous activity muscles become fatigued and stop contracting efficiently

An organism will receive all the energy it needs for living processes as a result of the energy transferred from respiration

For movement

For keeping

warm

reactions

To enable muscles to contract in animals.

Respiration

AQA GCSE

BIOENERGETICS

part 2

cytoplasm

mitochondria

plant cell

Electron micrograph of a mitochondrion

To keep a steady body temperature in a cold environment.

For chemical

To build larger molecules from smaller

Cellular respiration is an exothermic

reaction which is continuously

occurring in all living cells

animal cell

Anaerobic respiration

Respiration when oxygen is in short supply. Occurs during intensive exercise

During hard exercise, muscle cells are respiring so fast that blood cannot transport enough oxygen to meet their needs.

Glucose is partially oxidised to produce lactic acid which builds up in muscle tissue causing them to become painful and fatigued.

glucose -> lactic acid

an oxygen debt

Response to exercise

During exercise the human body reacts increased demand for energy

Heart rate increases

Top pump oxygenated blood faster to the muscle tissues and cells.

Breathing rate and breath volume increase

This increases the amount of oxygen entering the blood stream.

Metabolism is the sum of all the reactions in a cell or the body

Metabolism

The energy transferred by respiration in cells is used by the organism for the continual enzyme controlled processes of

metabolism.

Metabolism

Conversion of glucose to starch, glycogen and cellulose.

The formation of lipid molecules from a molecule of glycerol and three molecules of fatty acid.

The use of glucose and nitrate ions to form amino acids which in turn are used to synthesise proteins.

Respiration

Breakdown of excess proteins to form urea for excretion.

The extra amount of oxygen required to remove all lactic acids from cells is called the oxygen debt

Lactic acid builds up in the muscles cells during exercise

Blood flows through the muscle cells and transports the lactic acid to the liver

The liver oxidises the lactic acid and converts it back to glucose

exercise Response 트 only

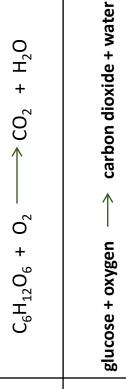
The end products are ethanol and carbon dioxide. Anaerobic respiration in yeast cells is

Anaerobic respiration in plant and yeast cells

called fermentation

glucose \longrightarrow ethanol + carbon dioxide

> This process is economically important in the manufacture of alcoholic drinks and bread.


Anaerobic respiration releases a much smaller amount of energy than aerobic respiration.

The incomplete oxidation of glucose causes a build up of lactic acid and creates

Aerobic respiration

Respiration with oxygen. Occurs inside the mitochondria continuously

Glucose is oxidised by oxygen to transfer the energy the organism needs to perform it's functions.

Aerobic respiration releases a large amount of energy from each glucose molecule

Cells called **Enables humans to react to their** Human control systems include Detect stimuli (changes in environment). receptors their behaviour **Coordination** e.g. brain, spinal cord and pancreas that receive information from receptors. centres Muscles or glands, which bring about **Effectors** responses to restore optimum levels. **AQA GCSE** The human **HOMEOSTASIS AND** nervous **RESPONSE** part 1 cord. system dendrites cell body Stimulus axon with insulating sheath Receptor Typical motor neurone

Synapse (gap where two

neurones meet).

axon terminal vesicles

Synaptic cleft

axon

direction of impulse

neurotransmitter

neurotransmitter receptors

surroundings and to co-ordinate

Information from receptors passes along cells (neurones) as electrical impulses to the central nervous system (CNS)

The CNS is the brain and the spinal

Coordinates the response of effectors; muscles contracting or glands secreting hormones

Coordinator

Effector

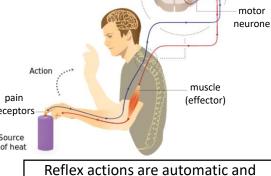
Response

spinal cord

Lights switch on

Cells in retina

CNS


connected to iris

Pupils get smaller

sensory

	Receptor	Detect stimuli.	
Sensory neurone		Long axon carries impulse from receptor to spinal cord.	
Reflex arc	Synapse	Gap where neurones meet. Chemical message using neurotransmitter.	ŗ
Refle	Relay neurone	Allows impulses to travel between sensory and motor neurones in the spinal cord.	so of
	Motor neurone	Long axon carries impulse from receptor to effector.	
	Effector	Muscle or gland that carries out response.	

rapid; they do not involve the conscious part of the brain and can protect humans from harm.

Controls in the human body

Blood glucose concentration

Body temperature

Water levels

These automatic control systems may involve nervous responses or chemical responses.

The regulation of internal conditions of a cell or organism to maintain optimum conditions for function.

Homeostasis maintains optimal conditions for enzyme action and all cell functions.

Homeostasis

Human endocrine system

Pituitar Thyroid Thymus Adrenal **Ovaries** Testes

Composed of glands which secrete chemicals called hormones directly into the bloodstream.

The blood carries the hormone to a target organ where is produces an effect. Compared to the nervous system effects are slower but act for longer.

Pituitary gland

Endocrine system

'Master gland'; secretes several hormones into the blood

Stimulates other glands to produce hormones to bring about effects.

AQA GCSE

HOMEOSTASIS

AND RESPONSE

PART 2

Produced in adrenal glands, Negative feedback (HT only) increases breathing/heart rate, blood flow to muscles, **Adrenaline** conversion glycogen to glucose. Prepares body for 'fight or flight'.

stimulates the basal metabolic **Thyroxine** rate. Important in growth and development.

Produced in the thyroid gland,

Blood glucose concentration

Monitored and controlled by the pancreas

Too high	(HT only) Too low
Pancreas produces the hormone insulin, glucose moves from the blood into the cells. In liver and muscle cells excess glucose is converted to glycogen for storage.	Pancreas produces the hormone glucagon that causes glycogen to be converted into glucose and released into the blood.

Increasing thyroxine levels prevent the release of thyroid stimulating hormone which stops the release of thyroxine.

Control of

blood glucose

concentration

Diabetes		
Type 1	Type 2	
Pancreas fails to produce sufficient insulin leading to uncontrolled blood glucose levels. Normally treated by insulin injection.	Obesity is a risk factor. Body cells no longer respond to insulin. Common treatments include changing by diet and increasing exercise.	

better hope – brighter future

<u>negative feedback</u> system. Insulin is released to reduce glucose levels and which cause the pancreas to release glucagon (HT) Rising glucose levels inhibit the release of glucagon in a

FSH and LH are used as 'fertility drugs' to help someone become pregnant in the normal way

In Vitro Fertilisation (IVF) treatment.

Involves giving a mother FSH and LH to stimulate the maturation of several eggs

The eggs are collected from the mother and fertilised by sperm from the father in a laboratory.

The fertilised eggs develop into embryos.

At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb).

Hormones are used in modern reproductive technologies to treat infertility

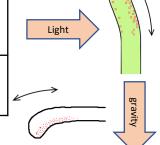
hormones to coordinate and control growth Plants produce

Plant responses using hormones (auxins)

Light (phototropism)

Gravity

(geotropism or gravitropism)


Light breaks down auxins and they become unequally distributed in the shoot. The side with the highest concentration of auxins has the highest growth rate and the shoot grows toward the light.

Gravity causes an unequal distribution of auxins. In roots the side with the lowest concentration has the highest growth rate and the root grows in the direction of gravity.

In new shoots from a seedling the unequal distribution of auxins causes the shoot to grow away from gravity.

(HT only) Gibberellins are important in initiating seed germination.

(HT only) Ethene controls cell division and ripening of fruits.

The use of hormone to treat infertility (HT only)

Contain hormones to inhibit FSH

hormones **Plant**

hormones (HT only) plant of

hormones are used in agriculture and Plant growth horticulture

Weed killers, rooting powders, **Auxins** promoting growth in tissue culture. Control ripening of fruit during Ethene storage and transport.

> End seed dormancy, promote flowering, increase fruit size.

Potential disadvantages of IVF

Emotional and physical stress.

Success rates are not high.

Multiple births risk to mother and babies.

AQA GCSE HOMEOSTASIS AND RESPONSE PART 3

Hormones in human reproduction

Gibberellins

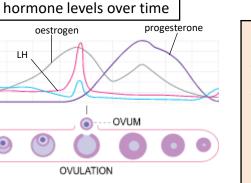
Contraception

Fertility can be controlled by hormonal and non hormonal methods	Oral contraceptives	production so that no eggs mature.	
	Injection, implant, skin patch	For slow release of progesterone to inhibit the maturation and release of eggs for months or years.	
	Barrier methods	Condoms or diaphragms which prevent sperm reaching the egg.	
	Intrauterine devices	Prevent implantation of an embryo or release a hormone.	
	Spermicidal agents	Kill or disable sperm.	
	Abstaining	Avoiding intercourse when an egg may be in the oviduct.	
	Surgery	Male or female sterilisation.	

During puberty reproductive hormones cause secondary sexual characteristics to develop Testosterone (main male

Oestrogen (main female reproductive hormone)

Produced in the ovaries. At puberty eggs being to mature releasing one every 28 days -


Produced in the testes

stimulation sperm production.

progesterone

reproductive hormone)

ovulation. (HT only) a graph of

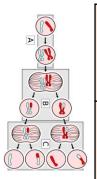
cycle	Follicle stimulating hormone (FSH)	Causes maturation of an egg in the ovary.	(HT) FSH stimulates ovaries to produce oestrogen.
Menstrual	Luteinising hormone (LH)	Stimulates release of an egg.	(HT) Oestrogen stop: FSH production and
Me	Oestrogen and	Maintain uterus	stimulates LH production in

lining.

Pituitar Thyroid Testes

Female

ovaries to produce oestrogen. (HT) Oestrogen stops FSH production and stimulates LH production in pituitary gland.


Gametes are made in reproductive organs (in animals ovaries and testes)

Cells divide by meiosis to form gametes

Copies of the genetic information are made.

The cell divides twice to form four gametes each with single set of chromosomes.

All gametes are genetically different from each other.

Sexual reproduction involves the fusion of male and female gametes.

Asexual reproduction involves only one parent and no fusion of gametes.

Sperm and egg in animals.

Pollen and egg cells in flowering plants.

e.g. cloning of females only in an aphid population.

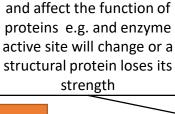
Produced by meiosis. There is mixing of genetic information which leads to a variety in the offspring.

Only mitosis is involved. There is no mixing of genetic information. This leads to genetically identical clones.

Gametes join at fertilisation to restore the number of chromosomes

Meiosis

The new cell divides by mitosis. The number of cells increase. As the embryo develops cells differentiate.


Meiosis leads to non-identical cells being

formed while mitosis leads to identical cells being formed

DNA and the genome

Sexual and asexual reproduction

AQA GCSE INHERITANCE, **VARIATION AND EVOLUTION Part 1**

Protein

synthesis

(HT only)

Some change the shape

Most do not alter the protein so that its appearance or function is not changed.

In DNA the

complementa

ry strands C,

A, T, G always

link in the

same way. C

always linked

to G on the

opposite

strand and A

to T.

nucleotide

Mutations occur

continuously (HT only)

When the protein chain is complete it folds to form a unique shape. This allows

proteins to do their job as enzymes, hormones or new structures such as collagen.

(protein synthesis) Composed of chains of amino acids. A sequence of 3 bases codes for a particular amino acid.

(HT) Making new proteins

DNA in the nucleus unravels.

Enzymes make a copy of the DNA strand called mRNA.

mRNA moves from the nucleus to ribosome in the cytoplasm.

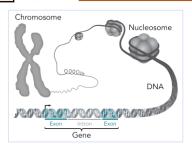
Ribosomes translate each 3 bases into amino acids according to mRNA template

Ribosomes link amino acids brought by carrier proteins.

A long chain of amino acids form. Their specific order forms a specific protein.

A sequence of 3 bases is the code for a particular amino acid. The order of bases controls the order in which each amino acid is assemble to produce a specific protein.

DNA structure

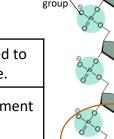

Genetic material in the

nucleus is composed of

a chemical called DNA.

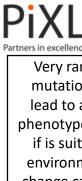
Polymer made up of two strands forming a double helix.

Contained in structures called chromosomes. A gene is a small section of DNA on a chromosome. Each gene codes for a sequence of amino acids to make a specific protein.



The genome is the entire genetic material of an organism.

> The whole It is of great human importance genome for future has now medical been developments studied.


Searching for genes linked to different types of disease.

Understanding and treatment of inherited disorders.

Tracing migration patterns from the past.

better hope – brighter future

Very rarely a mutation will lead to a new phenotype which if is suited to environmental change can lead to rapid change in the species.

Embryo screening: small piece of developing placenta removed to check for presence of faulty genes

Gene therapy: replacing the faulty allele in somatic cells with a normal allele

Mother (

Amy

Peter

Inherited disorders

Female without disorder

Female with disorder

Male without disorder

AQA GCSE

INHERITANCE,

VARIATION AND

EVOLUTION PART 2

Male with disorder

Embryo	Economic	Costly and not 100% reliable.
screening /gene	Social	Not available to everyone (due to cost).
therapy issues	Ethical	Should only 'healthy' embryos be implanted following screening.

Mutations occur continuously

characteristics of individuals in a population may be due to Genetic causes Variation: difference in the (inheritance) **Environmental** causes (condition they have developed in) A combination of genes and

environment

All genetic variation arises in mutation, most

have no effect on phenotype, some influence

but very few determine phenotype.

The genome and its interaction with the environment

influence the development of phenotypes

There is usually extensive genetic variation within the population of a species e.g. hair colour, skin colour, height that can also be affected by environment e.g. nutrition, sunlight.

was homozygous dominant then all of the offspring would have the disorder. He must be heterozygous a family tree: If the father

Variation

Some disorders are inherited. They are caused by the inheritance of certain alleles

Polydactyly	Cystic fibrosis
Caused by inheriting a dominant allele.	Caused by inheriting a recessive allele (both parents have to at least carry it).
Causes a person/anim	A disorder of the cell membrane.

al to have

extra toes or

fingers.

Patients cannot

control the viscosity of their mucus. 23

Ordinary human body cells contain

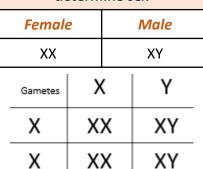
determination

Sex

pairs of chromosomes

Embryo screening and gene therapy may alleviate suffering

Genetic inheritance


The concept of probability in predicting results of a single gene cross.

Dominant and recessive allele combinations

Dominant	Recessive	
Represented by a capital letter e.g. B.	Represented by a lower case letter e.g. b.	

3 possible combinations: Homozygous dominant BB Heterozygous dominant Bb Homozygous recessive bb

One pair of chromosomes carry the genes that determine sex

The probability of a male of female child is 50%. The ratio is 1:1

Using a punnet square (using mouse fur

colour as an example)		
Parent	Black fur	White fur
phenotype		
Parent genotype	BB	bb
	In each egg	In each sperm
What gametes are present	B	b

Gametes	b	þ
В	>Bb	Bb
В	Bb	Bb

The probability of black fur offspring phenotype is 100%. All offspring genotypes are heterozygous (Bb).

Crossing two heterozygous mice (Bb)

Gametes	В	b
В	ВВ	Bb
b	Bb	bb

The probability of black fur is 75% and white fur 25%. The ratio of black to white mice is 3:1

	Gamete	Sex cells produced in meiosis.	
Define terms linked to genetics	Chromosome	A long chain of DNA found in the nucleus.	
	Gene	Small section of DNA that codes for a particular protein.	
	Allele	Alternate forms of the same gene.	
	Dominant	A type of allele – always expressed if only one copy present and when paired with a recessive allele.	
	Recessive	A type of allele – only expressed when paired with another recessive allele.	
	Homozygous	Pair of the same alleles, dominant or recessive.	$ \setminus $
	Heterozygous	Two different alleles are present 1 dominant and 1 recessive.	
	Genotype	Alleles that are present for a particular feature e.g. Bb or bb	$ \ $
	Phenotype	Physical expression of an allele combination e.g. black fur, blonde hair, blue eyes.	

Some characteristics are controlled by a single gene e.g. fur colour, colour blindness.

Father

Sam

The alleles present, or genotype operate at a molecular level to develop characteristics that can be expressed as a phenotype.

Most characteristics are as a result of multiple genes interacting.

Over time this results in the formation of new

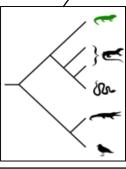
Scottish Blackface (Cytoplasmic Donor)

The theory of evolution by natural selection.

Species of all living things have evolved from simple life forms that first developed 3 billion years ago.

Through natural selection of variants (genotypes) that give rise to phenotypes best suited to their environment or environmental change e.g. stronger, faster. This allows for variants to pass on their genotype to the next generation.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.



Classification of living organisms

Use current classification data for living organisms and fossil data for extinct organisms

Humans have been doing this for thousands of years since

Choosing characteristics

Evolutionary trees are a method

used by scientists to show how

organisms are related

Desired characteristics are chosen for usefulness or appearance

Disease resistance in food crops.

Animals which produce more meat or milk.

Domestic dogs with a gentle nature.

Large or unusual flowers.

flowers and insects.

PiXL

Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects e.g. British Bulldogs have

breathing difficulties.

Concern: effect of GMO on wild populations of

Genes from the chromosomes of humans or other organisms can be 'cut out' and transferred to the cells of other organisms.

Genetically modified crops (GMD)

Crops that have genes from other organisms

more resistant to insect attack or herbicides.

To become

To increase the yield of the crop.

A change in the inherited characteristics of a population over time through the process of natural selection.

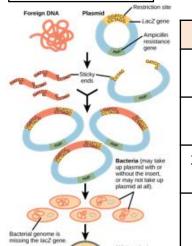
Finn-Dorset

Direct Current Pulse

Cloning (Biology only)

Evolution

AQA GCSE INHERITANCE VARIATION AND **EVOLUTION** PART 3


they first bred food from crops and domesticated animals. The process by which humans breed plants/animals for

particular genetic characteristics

> **Selective** breeding

Genetic engineering

Modern medical is exploring the possibility of GM to over come inherited disorders e.g. cystic fibrosis

Cloning techniques in plants/animals

Small groups of cells to grow new plants. Important Tissue for preservation of rare culture plants and commercially in nurseries.

Part of a plant is cut off and **Cuttings** grown into full plant.

Embryo transplants

Splitting apart cells from animals embryo before they become specialised. New clone embryos are inserted into womb of adult female.

Concern: some people have ethical objections to adult cell cloning e.g. welfare of the animals.

Genetic engineering process (HT only)

Selective breeding

Choosing parents with the desired

characteristics from a mixed

population

Chosen parents are bred together.

From the offspring those with

desired characteristics are bred

together.

Repeat over several generations

until all the offspring show the

desired characteristics.

Concern: effect of GMO on human

health not fully explored

- 1. Enzymes are used to isolate the required gene.
- 2. Gene is inserted into a vector bacterial plasmid or virus.
- 3. Vector inserts genes into the required cells.
- 4. Genes are transferred to plants/animals/microbes at an early stage of development so they develop the required characteristics.

Adult cell cloning

- 1. Nucleus is removed from an unfertilised egg.
- 2. Nucleus from body cell is inserted into egg cell.
- 3. An electric shock stimulates the egg to divide into an embryo
- 4. Embryo cells are genetically identical to adult cells.
- 5. When embryo has developed into ball of cells it is inserted into host womb.

better hope – brighter future

have plasmids with the foreign

AQA GCSE INHERITANCE VARIATION AND EVOLUTION PART 4

evolution

for

Evidence

The full human classification

Carl Linnaeus classified

Classification of living organisms

Kingdom Animalia

Phylum Chordata

Class Mammalia

Order Primates

Family Hominidae

Genus Homo

Species sapiens

Due to improvements in microscopes, and the understanding of biochemical processes, new models of classification were proposed.

Carl Woese

3 domain based on chemical analysis.

Archaea (primitive bacteria), true bacteria, eukaryota.

Organisms are named by the binomial system of genus and species. Humans are *Homo sapiens*

Fossils

'remains' of ancient organisms which are found in rocks

Parts of organism that have not decayed as necessary conditions are absent.

Parts of the organism replaced by minerals as they decay.

Preserved traces of organisms such as footprints, burrows and rootlet traces.

Early forms of life were soft bodied and few traces are left behind and have been destroyed by geological activity, cannot be certain about how life began

Fossils and antibiotic resistance in bacteria provide evidence for evolution.

Autipiotic resistant pacteria pacteria produce antibiotic resistant strains which can spread

Resistant strains are not killed.

Strain survives and reproduces.

People have no immunity to strain and treatment is ineffective.

Extinction

When no members of a species survive

Due to extreme geological events, disease, climate change, habitat destruction, hunting by humans.

Fossils tell scientists how much or how little different organisms have changed over time.

Evolution is widely accepted. Evidence is now available as it has been shown that characteristics are passed on to offspring in genes.

					Ŧ
		Environment	The conditions surrounding an organism; abiotic and biotic.		
٦	stem	Habitat	Place where organisms live e.g. woodland, lake.		
	Ecosystem	Population	Individuals of a species living in a habitat.	7	
		Community	Populations of different species living in a habitat.		
			Organisms require a supply of materials from their		

Organisms require a supply of materials from their surroundings and from the other living organisms.

CARBON CYCLE

Bacteria respire when breaking down dead organisms releasing CO2.

CO₂ taken in

Decomposition and material cycling

> organisation **Levels of**

Competition

Animals compete with each other for food, mates and territory. Species depend on each other for food, shelter, pollination, seed dispersal etc. Removing a species Interdependence

Plants in a community or habitat compete with each other for light, space, water and mineral ions.

can affect the whole community **EXAMPLE:** climate change is leading to more dissolved CO₂ in oceans lowering greys also carry a pathogen food for red squirrels. The increased competition for

Biotic

Living factors that

EXAMPLE: Introduction of

the pH of the water affecting organisms living there. **Abiotic**

Non-living factors

Interdependence during photosynthesis. and competition

> Organisms respire

releasing

Surviving and reproducing

> **AQA GCSE ECOLOGY PART 1**

> > **Adaptations**

Organisms adaptations enable them to survive in conditions where they normally live.

Abiotic and biotic factors.

Adaptations may

be structural,

behavioural or

functional.

that affect a affect a community community Living intensity. Availability of food. Temperature. Moisture levels. New predators Soil pH, mineral arriving. content. Wind intensity and direction. New pathogens. Carbon dioxide

Oxygen levels for aquatic organisms.

levels for a plant.

One species outcompeting so numbers are no longer sufficient to breed

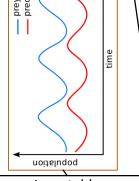
building blocks for future organisms

Materials are recycled to provide the

Dead organisms decayed by bacteria

and fungi releasing carbon.

Photosynthetic organisms are the producers of biomass for life on Earth


	Food	cnains
Feed	ing relationsh	ips in a comm
	Drimor	Cocondon

unity Tertiary Primary Secondary Producer consumer consumer consumer

organisms releases Breakdown of dead mineral ions can

All food chains begin with a producer e.g. grass that is usually a green plant or photosynthetic algae.

Consumers that kill and eat other animals are predators and those eaten are prey.

In a stable community the numbers of predators and prey rise and fall in cycles.

Cactus in dry, hot Polar bear in extreme cold artic desert

No leaves to reduce water loss, wide deep roots for absorbing water.

Plants

Adaptations

Animals

Hollow hairs to trap laver of heat. Thick layer of fat for insulation.

Extremophiles

Deep sea vent

bacteria

Populations form in thick layers to protect outer layers from extreme heat of vent.

Temperature, water, oxygen Increase the rate of decay. In

enzyme controlled reactions raising the temperature too high will denature the enzymes.

Factors affecting rate of decay

conditions for making

Farmers optimise

compost for use as

Anaerobic decay in biogas

generators produces

methane gas, used as a fuel.

better hope – brighter future

Global warming

Levels of CO₂ and methane in the atmosphere are increasing. Decreased land availability from sea level rise, temperature rise damages delicate habitats, extreme weather events harm populations of plants and animals. There is a global consensus about global warming and climate change based on systematic reviews of thousands of peer reviewed publications.

Global Warming Predictions

2070-2100 Prediction
vs. 1960-1990
Average

0 1 2 3 4 5 6 7 8
Temperature Increase (°C)

AQA GCSE ECOLOGY PART 2

Maintaining biodiversity

Human activity can have a positive impact on biodiversity

Scientists and concerned citizens

Put in place programmes to reduce the negative impacts of humans on ecosystems and biodiversity

Breeding programmes for endangered species.

Protection and regeneration of rare habitats.

Reintroduction of field margins and hedgerows in agricultural areas where farmers grow only one type of crop.

Reduction of deforestation and CO₂ emissions by some governments.

Recycling resources rather than dumping waste in landfill.

Some of the programmes potentially conflict with human needs for land use, food production and high living standards.

\

	E
	S
Maintain a	е
great	
biodiversity	

insures the stability of ecosystems

By reducing the dependence on one species on another for food, shelter, maintenance of the physical environment.

Many human activities are reduction **Future of** human biodiversity and only recently measures species have been taken to stop it.

Human activity can have a negative impact on biodiversity

Pollution kills plants and animals which can reduce biodiversity.

Biodiversity is the variety of all different species of organisms on Earth, or within an ecosystem

Biodiversity

Experimental methods are used to determine the distribution and abundance of a species.

pling iques	Quadrats	Organisms are counted within a randomly placed square
Sam	Transects	Organisms are counted along a belt (transect) of the ecosystem.

Processing data		
Median	Middle value in a sample.	
Mode	Most occurring value in a sample.	
Mean	The sum of all the value in a sample divided by the sample number.	

Biodiversity and the effect of human interaction on the ecosystem

Rapid growth in human population and higher standard of living

Waste management

More resources used and more waste produced.

Pollution in water; sewage, fertiliser or toxic chemicals.

Pollution in air; smoke or acidic gases.

Pollution on land; landfill and toxic chemicals.

AQA GCSE

ECOLOGY PART 3

Waste, land use and deforestation

Land use

Humans reduce the amount of land and habitats available for other plants, animals and microorganisms.

Building and quarrying.

Farming for animals and food crops.

Dumping waste.

Destruction of peat bogs to produce cheap compost for gardeners/farmers to increase food production.

Large scale deforestation

Provide land for cattle and rice fields, grow crops for biofuels.

Deforestation reduces biodiversity and removes a sink for increasing the amount CO₂ in the atmosphere. This conflicts with conserving peat bogs and peatlands as habitats for biodiversity and reduce CO₂ emissions.

The decay or burning of peat release CO₂ into the atmosphere.

