YEAR 9 - CONSTRUCTING IN 2D/3D.

What do I need to be able to do?

By the end of this unit you should be able to:
I - Name $2 D$ \& 3D shapes
I Recognise Prisms

- Sketch and recognise nets
- Draw plans and elevations
- Find areas of $2 D$ shapes
- Find Surface area for cubes, cuboids, triangular prisms and cyinders
I - Find the volume of 3 D shapes

Keywords

2D: two dimensions to the shape eg length and width
3D: three dimensions to the shape eg length, wioth and height
Vertex: a point where two or more line segments meet
Edge a line on the boundary joining two vertex
Face: a flat surface on a solid object
I Cross-section: a view inside a solid shape made by cutting through it
Plan: a drawing of something when drawn from above (sometimes birds eye view)
I Perspective: a way to give ilustration of a 3D shape when drawn on a flat surface.

Name 2D \& 3D shapes

N $==二=二=$
Nets of cuboids

km grids help to draw accurately

Visualise the folding of the net Will it make the cuboid with all sides touching

1, Sketch and recognise nets
Do they have the same

Where do the edges
section will aso be identical to the end faces.
a cyinder athough with very similar properties does not have flat faces so is not categorised as a prism

Do they have the same
number of faces?

The direction you are considering the shape from determines the front and side views \qquad

area of 2D shapes

Rectangle
Base \times Height \square Triangle $1 / 2 \times$ Base \times Perpendicular height

Parallelogram/Rhombus Base x Perpendicular height

II Surface area se

IIRecognise prisms a sold object with two identical ends

Ore the shapes of th
faces correct?

YEAR 9 - CONSTRUCTING IN 2D/3D... Constructions $\&$ congruency

What do I need to be able to do?

I By the end of this unit you should be able to:
I- Draw and measure angles
I - Construct scale drawings
I - Find locus of distance from points, lines, two lines

- Construct perpendiculars from points, ines, angles
I- Identify congruence
I - Identify congruent triangles

I Draw and measure angles

Locus of a store from a straight in e

Locus equidistant from two points

Keywords

Protractor: piece of equipment used to measure and draw angles
Locus: set of points with a common property
Equidistant: the same distance
Discorectangle: (a stadium) - a rectangle with semi circles at either end
Perpendicular: lines that meet at 90°
arc: part of a curve
Bisector: a line that divides something into two equal parts
Congruent: the same shape and size

I Make sure the cross is at the end
I of the in (where you want the (angle)

I

From the angle vertex draw two arcs that cut the lines forming the angle

Keep the compass the same size and use the new arcs as centres to draw intersecting arcs in the middle

Constructing Triangles $\underset{\text { steps }}{\text { Link to }} \rightarrow \mathbf{R}$
Side, angle, angle
Side, angle, Side

Keep the compass the same
size and draw two arcs from
equidistant from both points

Congruent figures

Congruent figures are identical in size and shape - they can be reflections or rotations of each other

Congruent shapes are identical - all corresponding sides
and angles are the same size

1 Construct a perpendicular from

Correcting the arcs makes the bisector

$$
\text { If } P \text { is a point on the line the steps are the same }
$$

Conovenent trances

Side-side-side

| | all three sides on the triangle are the same size

angle-side-angle

Two angles and the side connecting them are equal in two triangles

Side-angle-side

Two sides and the angle in-between them are equal in It two triandes It will ass mean the third side is the same | size on both shapes)
I Right angle-hypotenuse-side
| | The triangles both have a right angle, the
| | hypotenuse and one side are the same

