yeAr 8 - AlgeBRalc techniQues...
@whisto_maths

Indices

What do I need to be able

 to do?By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Mutiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Keynords

Base: The number that gets mutiplied by a power
Power: The exponent - or the number that tells you how many times to use the number in multiplication
Exponent: The power - or the number that tells you how many times to use the number in mutipication
I Indices: The power or the exponent.
I Coeffcient: The number used to mutiply a variable
Simpify: To reduce a power to its lowest term
Product: Mutiply

Iadodion Subtraction with indices

Divide expressions with indices

Cross cancelling factors shows cancels the expression

This expression cannot be divided (cancelled down) because there are no common factors or similar terms

Mutiply expressions with indices

	$4 b \times 3 a$
\equiv	$5 t \times 9 t$
\equiv	$5 \times 3 \times 3 \times a$
\equiv	$\equiv 5 \times t \times 9 \times t$
$\equiv 12 a b$	$\equiv 5 \times 9 \times t \times t$

$2 b^{4} \times 3 b^{2}$
$\equiv 2 \times b \times b \times b \times b \times 3 \times b \times b$
$\equiv 2 \times 3 \times b \times b \times b \times b \times b \times b$
$\equiv 6 b^{6}$

here are often misconceptions with this calculation but break down
the powers

Oadtion Subtraction laws for indices
$3^{5} \times 3^{2}$

$1=(3 \times 3 \times 3 \times 3 \times 3) \times(3 \times 3)$
I The base number is all the same so the terms
can be simplified

addition law for indices

$a^{m} \times a^{n}=a^{m+n}$

$$
3^{5} \div 3^{2} \longrightarrow 3^{3}
$$

Subtraction law for indices

$$
a^{m} \div a^{n}=a^{m-n}
$$

Standard Form

\section*{What do I need to be able to do?
 By the end of this unit you should be able to:
 - Write numbers in standard form and as ordinary numbers
 - Order numbers in standard form
 I - add/ Subtract with standard from
 I Mutiply/ Divide with standard form
 I - Use a calculator with standard form
 Postive poneres of 10
 I billion - 1000000000
 $10 \times 10 \times 10=10^{9}$
 | addition rule for indices $10^{a} \times 10^{b}=10^{a b b}$ |
| :---: |
| Subtraction rule for indices $10^{a}-10^{b}=10^{a-b}$ |}

Keywords

Standard (index) Form: A system of writing very big or very small numbers
Commutative: an operation is commutative if changing the order does not change the result.
I Base: The number that gets mutipied by a power
I Power: The exponent - or the number that tells you how many times to use the number in mutipication I Exponent: The power - or the number that tells you how many times to use the number in multipication Indices: The power or the exponent.
Negative: a value below zero.

Numbers between 0 and

0.05.4		- $\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
$I=5.4 \times 10^{-2}$	10^{0}	- ${ }^{10-1}$	10^{-2}	10^{-3}
\|	0	- 0	5	4

A negative power does not mean a negative
answer - it means a number closer to 0
i| Standard form with numbers >1 I Negative powers of $\overline{10}$

$\begin{aligned} & \text { I any number } \\ & \text { i between land } \\ & \text { I kssthan } 10 \rightarrow A \times 10^{n} \rightarrow \text { any integer } \\ & \text { il } \\ & \text { II Example } \\ & \text { il } \text { Non-example } \end{aligned}$			$\begin{aligned} & \mid l \\ & \|l\| 001 \\ & \left\|\left\lvert\, 1 \times \frac{1}{1000}\right.\right. \\ & \left\|\mid \times 10^{-3}\right. \end{aligned}{ }^{1}$		
$\begin{aligned} & =3.2 \times 10^{4} \\ & -\quad 11=3.2 \times 10 \times 10 \times 10 \times 10 \end{aligned}$				$\begin{aligned} & \text { eponeren } \\ & \text { valas } \end{aligned}$	
$\\|=32000$					
II Order numbers in standard form			10^{2}		
6.4×10^{-2}	2.4×10^{2}	3.3×10^{0}			
0.064	240				

Mental calculations

I Muttiplication and division $\frac{1.5 \times 10^{5}}{0.3 \times 10^{3}}$ Dusion questions
 $\left.(1.5) \times 10^{5}\right) \div(0.3) \times 10^{3} 1$
 $15-0.3 \times 10^{5}-10^{3}$

YEAR 9 －REASONING WITH ALGEBRA．．．

What do I need to be able to do？

By the end of this unit you should be able to：
－Compare gradients
－Compare intercepts
－Understand and use $y=m x+c$
－Find the equation of a line from a graph
－Interpret gradient and intercepts of real－ life graphs

Keywords

Gradient：the steepress of a line

11 intercept：where two ines cross The y－intercept：where the ine meets the y－axis
Paralle：two lines that never meet with the same gradient
Co－ordinate：a set of values that show an exact postion on a graph
I Linear：inear graphs（straight ine）－Inear common difference by addtion／subtraction
II asymptote：a straight ine that a graph will never meet
I Reciprocal：a pair of numbers that multiply together to give I
11 Perpendicular：two ines that meet at a right angle

ニニニニニニニニニニニニニニ」

Lines parallel to the axes

all the points on this line have
a \times coordinate of 10

Pbotingy $=m x+c$ copaphs

Compare Gradients

The coefficient of x（the number in front of x ）tells us the gradient of the line

Find the equation from a graph

The equation of a line can be rearranged： Eg ： $y=c+m x$ $c=y-m x$ Identify which coefficient you are identifying or comparing

The coordinate of a y intercept will always be（ $0, \mathrm{c}$ ）

Lines with the same y－ intercept cross in the same place

The value of c is the point at
－which the line crosses the
axis．Y intercept

In real life graphs like this values will always be positive because they
II measure distances or objects which cannot be negative．
II Direct Proportion graphs To represent direct proportion the graph must start at the origin．

A box of pens costs $£ 2.30$
Complete the table of values to show the cost of buying boxes of pens．

Boxes	0	1	2	3	8
Cost $(£)$		$£ 2.30$			

YEAR 9 - REASONING WITH ALGEBRA. Forming and Solving Equations

Keywords

II Inequality: an inequality compares who values showing if one is greater than, less than or equal to another

What do I need to be able to do?

By the end of this unit you should be able to

- Solve inequalities with negative numbers

I - Solve equations with unknowns on both sides I

- Solve inequalities with unknowns on both sides
I - Substitute into formulae and equations
- Rearrange formulae

Variable: a quantity that may change within the context of the problem
Rearrange: Change the order
Inverse operation the operation that reverses the action
I I Substitute: replace a variable with a numerical value
II Solve: find a numerical value that satisfies an equation

I Solve equations with brackets

1, FFomand solve ineapaties -
$6 x=18$

Inequalities with unknown on both sides

Solving inequalities has the same method as equations

Method I Make x positive first

Method 2 Keep the negative x

When you multiply or divide x by a negative you need to reverse the inequality

Formulae - all expressed in symbols \triangle Equations - include numbers and can be solved

Rearranang Formube (ore step)

x	
y	z

$x=y+z$
Rearrange to make y the subject.
$y=x-z$

Using inverse operations or fact families will guide you through rearranging formulae

Rearranging can also be checked by substitution Language of rearranging...

Make XXX the subject

Rearranging Formulae (two step)

In an equation (find x)
$4 x-3=9$
$+3=+3$
$4 x=12$
$\div 4=3$
$\underline{x}=3^{\div 4}$

In a formula (make x the subject) $x y-s=a$
$x y=a+s$
$\div y \div y$

$$
x=\underline{a+s}
$$

y
\longrightarrow
The steps are the same for solving and rearranging
Rearranging is often needed when using $y=m x+c$
eg Find the gradient of the line $2 y-4 x=9$
Make y the subject first $y=\frac{4 x+9}{2} \quad$ Gradient $=\frac{4}{2}=2$

