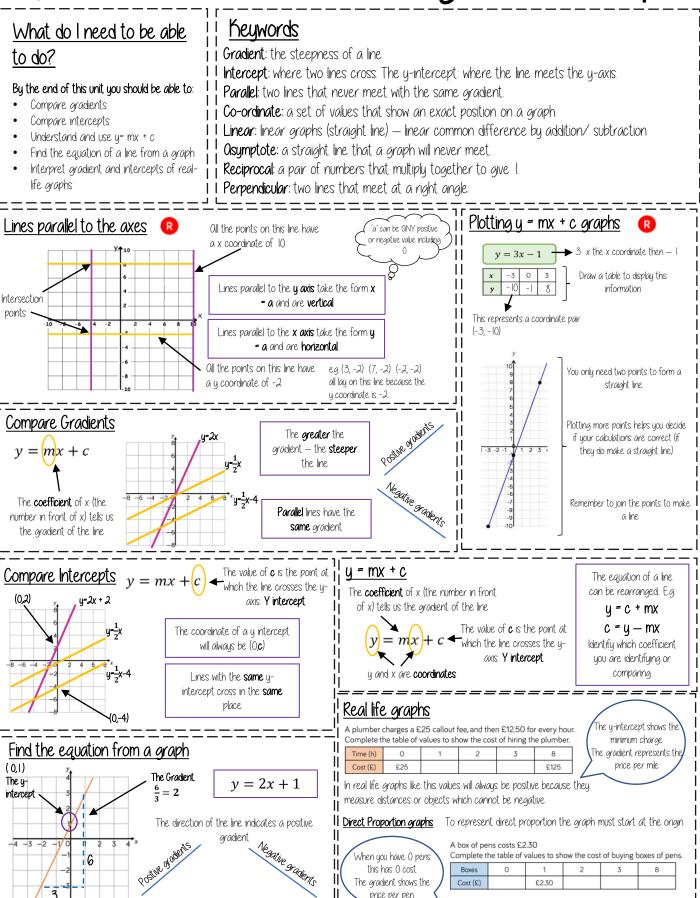
YEAR 8 - ALGEBRAIC TECHNIQUES...

le alia a

@whisto_maths	indices					
 By the end of this unit you should be able to: Odd/ Subtract expressions with indices Multiply expressions with indices Multiply expressions with indices 	used to multiply a variable					
1 Addition/ Subtraction with indices						
Coefficient Power $5x^2 + 4x^4$ Term Term Each square represents x^2 and each cube represents x^4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Only similar terms can be simplified If they have different powers, they are unlike terms $5x^2 + 2x^2 \longrightarrow 7x^2$ $5x^2 + 6x^4 - 3x^2 + x^4 \longrightarrow 7x^2$	$ \begin{array}{c} 2b^{4} \times 3b^{2} \\ \equiv 2 \times b \times b \times b \times b \times 3 \times b \times b \\ \equiv 2 \times 3 \times b \\ \equiv 6 b^{6} \end{array} $ There are often misconceptions with this calculation but break down the powers $ \begin{array}{c} \hline \underline{\text{Oddition/ Subtraction laws for indices}} \\ 3^{5} \times 3^{2} & \longrightarrow 3^{7} \end{array} $					
 Divide expressions with indices	$= (3 \times 3 \times 3 \times 3 \times 3) \times (3 \times 3)$ The base number is all the same so the terms					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Can be simplified					
$36 \xrightarrow{3} \cancel{3} \times \cancel{3} \times \cancel{3} \times \cancel{3} \xrightarrow{3} 3$	$a^{m} X a^{n} = a^{m+n}$					
$\frac{5 a^3 b^2}{15 a b^6} \rightarrow \frac{5 x a x a x a x b x b}{3 x 5 x a x b x b x b x b x b x b} \rightarrow \frac{a^2}{3b}$ Cross cancelling factors shows cancels the expression						
$\frac{23 \text{ a}^7 \text{ y}^2}{5 \text{ d} \text{ b}^6}$ This expression cannot be divided (cancelled down) because there are no common factors or similar terms	Subtraction law for indices $a^{m} \div a^{n} = a^{m-n}$					

YEAR 8 - DEVELOPING NUMBER...


Standard Form

ewnisto_math	<u> </u>											
What do I need to be able			Keywords									
 to do? By the end of this unit you should be able to: Write numbers in standard form and as ordinary numbers Order numbers in standard form Add/ Subtract with standard from Multiply/ Divide with standard form Use a calculator with standard form 				Standard (index) Form: Q system of writing very big or very small numbers Commutative: an operation is commutative if changing the order does not change the result. Base: The number that gets multiplied by a power Power: The exponent — or the number that tells you how many times to use the number in multiplication Exponent: The power — or the number that tells you how many times to use the number in multiplication Indices: The power or the exponent. Negative: Q value below zero.								
Positive powers of 10			<u> </u>	Standard form w	 rith numbers > [1 Negative powers of 10						
I billion – 1 000 000 000 IO x 10 x 1				Ony number between 1 and A x 10 n Ony integer less than 10		0.00 $ 1 \times \frac{1}{1000}$	10 0		1 10)-	1 100	1 1000	
Subtraction rule for indices $10^a \div 10^b = 10^{a-b}$				 <u>Example</u>	<u>Non-example</u>	 x 10 ⁻³	0	10 • 0		0		
Numbers between 0 and 1			י ו ר	3.2 x 10 ⁴ = 3.2 x 10 x 10 x 10 x 10 = 3.2000	$\begin{array}{c} (0.8) \times 10^{-4} \\ 5.3 \times 10^{-7} \end{array}$	the p	value to power 0 ys = 1		Negative powers do no indicate negative soluti		1	
$\begin{array}{c c} 0.054 & 1 \\ = 5.4 \times 10^{-2} & \\ \hline 0 \\ \end{array}$	 1/10 10⁻¹ 0 	$ \frac{1}{100} \frac{1}{1000} $ $ \frac{10^{-2}}{10^{-3}} $ $ \frac{10^{-3}}{1000} $	- -	0rder numbers i 6.4 x 10-2 2	n standard form	10 ² 10 ¹			t the powe		10-4	
0 negative power does not mean a negative 0.064 answer – it means a number closer to 0 0					240 I 0.13 Use a place value grid to compare the numbers for ordering							
Mental calculation	_		(7)x	 0⁵x3	Addition and Subt	raction	•	onvert into oro ard from at th	9	bers first and	back to	
Use addition for indices rule $(2 \times 10^{3}) + 4$ Divide the values		ces rule = 2. = 2.	24 x .4 x l(10^5 Not in Standard Form $0^1 \times 10^5$ Use addition for	- 600000 + 800000 - 1400000 - 1.4 x 10 ⁵ More robust method	6 x 10 ⁵		105 This is not the final answer	$\frac{\text{Method } 2}{= (6 + \delta) \times 10^5}$ = 14 x 10 ⁵ = 1.4 x 10 ¹ x 10 ⁵ = 1.4 x 10 ¹ x 10 ⁵			
		between I and 🔄 A 🗴 10 n 🌌 🛛 🚺			Less room for misconcept Easier to do calculations negative indices Can use for different pov	with			Only works if the powers are the same			
$\frac{1.5 \times 10^3}{0.3 \times 10^3}$ con loc	n questions ok like this	values for A	and th	ivision you can look at the e powers of 10 as two calculations	Using a calculator 14 x 10 ⁵ x 3.9 x 10 ³ Use a calculator to work out this question to a suitable degree of accuracy hput 14 and press x10 ³ Then press 5 (for the power) Press x hput 39 and press x10 ³ Then press 3 (for the power) This gives you the solution							
$(1.5)x \ 10^5$) \div $(0.3)x$ $(15 \div 0.3)x \ 10^5 \div$	10 ³)			raction laws for indices — For the calculations	Press Press Cick calculator for video tutorial Cick calculator for video tutorial To put into standard form and a suitable degree of accuracy							
$= 5 \times 10^{2}$		on law for indices A ⁿ = A ^{m + n}	6	Subtraction law for indices A ^m ÷ A ⁿ = A ^{m−n}	Press (SHIFT) (SETUP) and then press 7 for sci mode. Choose a degree of accuracy so in most cases press 2							

YEAR 9 — REASONING WITH ALGEBRA

@whisto maths

WITH ALGEBRA... Straight Line Graphs

YEAR 9 — REASONING WITH ALGEBRA... Evenisto_maths Forming and Solving Equations

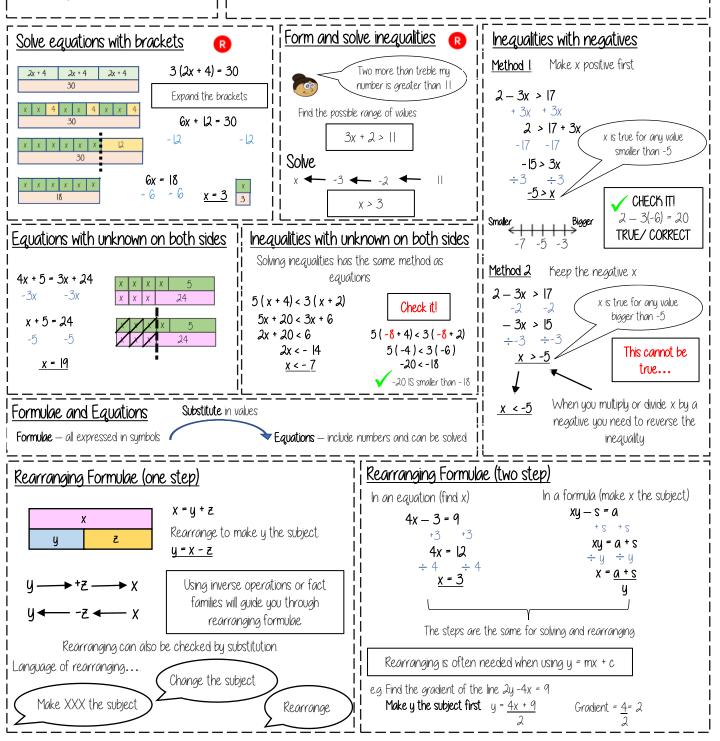
What do I need to be able to do?

By the end of this unit you should be able to:

Solve inequalities with negative numbers

Solve inequalities with unknowns on both

Substitute into formulae and equations


sides

Rearrange formulae

Solve equations with unknowns on both sides |

||<u>Keywords</u>

- **Inequality**: an inequality compares who values showing if one is greater than, less than or equal to another
- Variable: a quantity that may change within the context of the problem
- Rearrange: Change the order
- Inverse operation: the operation that reverses the action
- Substitute: replace a variable with a numerical value
- Solve: find a numerical value that satisfies an equation

