\title{

YEAR 8 - REPRESENTATIONS... Representing Data

## @whisto maths

## @whisto maths

## What do I need to be able to do?

By the end of this unit you should be abe to.

- Draw and interppet scater graphs
- Describe correlation and relationships.
- dentify different types of non-Inear relationships
- Desian and complete an ungrouped frequency table
I-Read and interpret grouped tables (discrete and contincous data)
I - Represent data in two way tables.


## Keywords

Variable: a quantity that may change within the context of the problem
Relationship: the link between two variables (tems). Eg. Between sunny days and ice cream sales Correlation: the mathematical definition for the type of relationship.
I Origin: where two axes meet on a graph
I Line of best fit: a straight line on a graph that represents the data on a scatter graph
Outlier: a point that lies outside the trend of graph
Quantitative: numerical data
Qualitative: descriptive information, colours, genders, names, emotions etc.
I Continuous: quantitative data that has an infinite number of possible values within its range.
I Discrete: quantiative or qualitative data that only takes certain values.
Frequency: the number of times a particular data value occurs.


Ungrouped Data
IThe number of times an
event happened 2 people had 0 sibings. This means the
are 0 siblings to be counted here

The table shows the number of siblings students have. The answers were
$3,1,2,2,0,3,4,1,1,2,0,2$
2 people had 0 siblings. This means ther

| 2 people have 3 sibings so there are 6 |
| :--- |
| siblings in total |
| Best represented by <br> discrete data (Not <br> aways a number) |
| OVERQLL there are <br> $0+3+8+6+4$ <br> Siblings $=21$ sibings |

## Grouped Data

better to group it This is so it is easier to look for a trent form | groups of equal size to make comparison more valid and spread the groups out from the smallest to the largest value.

|  | Cost of TV ( $£$ ) | Tally | Frequency |
| :---: | :---: | :---: | :---: |
|  | 101-150 | Tack 11 | 7 |
|  | 151-200 | Trace Tas 1 | 11 |
|  | 201-250 | Tinc. | 5 |
|  | 251-300 | 111 | 3 |

We do not know the exact value of each item in a group - so an estimate would be bused to calculate the overall total (Midpoint)
Continuous Data
To make sure al values are
ncloded nequalties represent
the subgroups


# Year 7 - REASONNG WTH NUMEER 

 @whisto_maths
## What do I need to be able to do?

By the end of this unit you should be able to:

- bentify and represent sets
- Interpret and create Venn diagrams
- Understand and use the intersection of sets
- Understand and use the union of sets
- Generate sample spaces for single events
- Calculate the probability of a single event
- Understand and use the probability scale


## Keywords

Set: collection of things
Element: each item in a set is called an element
Intersection: the overlapping part of a Venn diagram (OND $\cap$ )
Union: two ellipses that join (OR U)
I Motually Exclusive: events that do not occur at the same time
| Probability: Ilkelihood of an event happering
I I Bias: a buit-in error that makes all values wrong (unequal) by a certain amount, eg a weighted dice
I I Fair: there is zero bias, and all outcomes have an equal likelihood
I Random: something happens by chance and is unable to be predicted

## Identify and represent sets

The universal set has this symbol $\xi$ - this means EVERYTHING in the Venn diagram is in this set
a set is a collection of things - you write sets inside curly brackets \{ \}
$\xi=\{$ the numbers between I and 50 inclusive $\}$


## Interpret and create Venn diagrams



Mutualy exclosive sets
The two sets have nothing in common No overlap

Union of sets The two sets have some elements in common - they are placed in the intersection


Subset
all of set $B$ is also in Set $a$ so the ellipse fits inside the set

## The box

Ground the outside of every Venn diagram will be a box. If an
element is not part of any set it is placed outside an elipse but
inside the box


## Union of sets <br> Elements in the union <br> could be in set $A$ OR set <br> B <br> The notation for this is $A \cup B$ <br> $\qquad$

There are 7 elements that are either a multiple of 5 OR a mutiple of 3 between 1 and 15

This Venn shows the number of elements in each set
$\xi=\{$ the numbers between I Iand 15 noclisve $\}$
$A=\left\{\begin{array}{l}\text { Mutiples of } 5\} \quad B=\{\text { Mutipes of } 3\}\end{array}\right\}$.

The elements in $A \cup B$ are 5, 10, 15, 3, 9, 6, 12



- a sample space represents a possible outcome from an event
- They can be interpreted in a variety of ways because they do not tell you the probability


## Probability of a single event



$$
\frac{4}{10}=\frac{40}{100}=0.40=40 \%
$$



ISum of probabilities
Probability is always a value between 0 and I


The probability of getting a blue ball is $\frac{1}{5}$


The sum of the probabilities is 1

The table shows the probabilty of selecting a type of chocolate

| Dark | Milk | White |
| :---: | :---: | :---: |
| 0.15 | 0.35 |  |

$P($ white chocolate $)=1-0.15-0.35$
$=0.5$

## YEAR 8 - REPRESENTATIONS... Tables and Probability

## Keywords <br> I Outcomes: the result of an event that depends on probability. <br> I Probability: the chance that something will happen <br> Set: a collection of objects.

- Systematicaly list outcomes.
- Find the probabiliy from two-way tables.
- Find the probability from Venn diagrams


This is the set notation to list the outcomes $S=$

$S=\{\mathbb{H}, 2 H, 3 H, 4 H, 5 H, 6 H, I T, 2 T, 3 T, 4 T, 5 T, 6 T\}$

In between the $\}$ are $a$, the possible outcomes

## Probability from sample space

The possible outcomes from roling a dice

|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | H | I,H | 2,H | 3, H | 4,H | 5, H | 6, H |
|  | T | I, $T$ | (2, | 3,T | 4.T) | 5. | (6, 5 |

The possible outcomes from roling a dice


|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $H$ | $I, H$ | $2, H$ | $3, H$ | $4, H$ | $5, H$ | $6, H$ |
| $T$ | ,$T$ | $2, T$ | $3, T$ | $4, T$ | $5, T$ | $6, T$ |

Sample space diagrams provide a systematic way to display outcomes from events

## Construct sample space diagrams



What is the probability that an outcome has an even number and a tails?
Probability from two-way tables

|  | Car | Bus | Wak | Total |
| :--- | :--- | :--- | :--- | :--- |
| Boys | 15 | 24 | 14 | 53 |
| Girls | 6 | 20 | 21 | 47 |
| Total | 21 | 44 | 35 | 100 |

Probability from Venn diagrams
$P($ Girl wak to school $)=\frac{21 .}{100}$.

There are three even numbers with
Even numbers winh
tails
Numerator:
the event
Therememinator: are tweve of outcomes
possible outcomes

Product Rue

The number of items in event $b$

This whole curve includes


Swimming OND badminton

100 students were questioned if they played badminton or went to swimming club.
40 went swimming, 25 went to badminton and 11 went to both.


