What do I need to be able

 to do?By the end of this unit you should be able to:

- Describe and continue both lInear and non-linear sequences
- Explain term to term rules for linear sequence
- Find missing terms in a linear sequence

Keywords

I| Sequence: items or numbers put in a pre-decided order
II Term: a single number or variable
II Position: the place something is located
II Rule: instructions that relate two variables
II Linear: the difference between terms increases or decreases by the same value each time
I| Non-linear: the difference between terms increases or decreases in different amounts
I| Difference: the gap between two terms
II arithmetic: a sequence where the difference between the terms is constant
II Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero number

Describe and continue a sequence diagrammatically

CHECK - draw the next terms

Sequence in a table and graphically

Position: the place in the sequence

Term: the number or variable (the number of squares in each image)

Graphically

In a table
Position
Term

Because the terms increase by the same addition each time this
is linear - as seen in the graph

Continue Linear Sequences

$7,11,15,19 \ldots$

How do I know this is a linear sequence?
It increases by adding 4 to each term.
How many terms do I need to make this conclusion?
at least 4 terms - two terms only shows one difference not if this difference is
constant (a common difference).
How do I continue the sequence?
You continue to repeat the same difference through the next positions in the
I_ sequence

Continue non-linear Sequences

$$
1,2,4,8,16 \ldots
$$

How do 1 know this is a non-linear sequence?
It increases by multiplying the previous term by 2 - this is a geometric sequence because the constant is multiply by 2
I How many terms do I need to make this conclusion?
I at least 4 terms - two terms only shows one difference not if this difference is constant (a I common difference).
I How do I continue the sequence?
I You continue to repeat the same difference through the next positions in the sequence.

Explain term-to-term rule tory yo o et tron tee to teem

Try to explain this in full sentences not just with mathematical notation
Use key maths language - doubles, haves, multiply by two, add four to the previous term etc.

Kemporcs
Function: a relationship that instructs how to get from an input to an output
Input: the number/symbol put into a function
Output: the number/ expression that comes out of a function
I Operation: a mathematical process
I I Iverse: the operation that undoes what was done by the previous operation. (The opposte operation)
I Commutative: the order of the operations do not matter.
I) Substitute: replace one variable with a number or new variable

I Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)
Evaluate: work out
Linear: the difference between terms increases or decreases by the same value each time

What do I need to be able to

 do?By the end of this unit you should be able
to:

- Be able to use inverse operations and "operation families".
- Be able to substitute into single and two step function machines.
- Find functions from expressions.
- Form sequences from expressions
- Represent functions graphically.

Find functions from expressions

Find the relationship between the input and the output
Sometimes there can be a number of possible functions, $\mathrm{eg}+7 \mathrm{x}$ or $\times 2$ could both be solutions to the above function machine

Using letters to represent numbers

ir Single function machines (algebra)

$+10$
To find the input from the output
Use the INVERSE operation

Substitution into expressions

$4 y \longleftarrow 4$ lots of ' y '
If $y=7$ this means the expression is asking for 4 'lots of' 7
4×7 OR $7+7+7+7$ OR 7×4
eg: $y-2$
$=7-2=5$

Fepresenting finuctions graphicialuy
II Take the function and generate a sequence $2(x+3)$

II To represent graphicaly the inpot becoomes \times co-radinates
I) and the output becomes y co-ordinates
$y=2(x+3)$

This becomes a co-ordinate pair
$(2,10)$ to plot on a graph

NOTE:
Because this is a linear graph you can predict graph you can predict
other values
NPUT

YEAR 7 - ALGEBRAIC THINKINg @uhisto_maths Equality and Ëquivalence

What do I need to be able to do?

By the end of this unit you should be able to:

- Form and solve linear equations
- Understand like and unlike terms
- Simplify algebraic expressions

Keywords

Equality: two expressions that have the same value
Equation: a mathematical statement that two things are equal

1) Equals: represented by ${ }^{\prime}=$ ' symbol - means the same

I| Solution: the set or value that satisfies the equation
I| Solve: to find the solution
II Inverse: the operation that undoes what was done by the previous operation (The opposite operation)
I| Term: a single number or variable
II Like: variables that are the same are 'ilike'
II Coefficient: a muttiplicative factor in front of a variable eg. $5 x$ (5 is the coefficient, x is the variable)
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

There is more to this than just
spotting the answer

Solve one step equations $(x /+)$
Solve one step equations
$x+42=59$
$x+42=59$
$42+x=59$
$59-x=42$
$59-42=x$

