YEAR 7 — ALGEBRAIC THINKING

@whisto_maths

Sequences

What do I need to be able to do?

By the end of this unit you should be able

- Describe and continue both linear and non-linear sequences
- Explain term to term rules for linear sequence
- Find missing terms in a linear sequence

ii <u>Keywords</u>

11 Sequence: items or numbers put in a pre-decided order

11 Term: a single number or variable

Position: the place something is located

Rule: instructions that relate two variables

Linear: the difference between terms increases or decreases by the same value each time

Non-linear: the difference between terms increases or decreases in different amounts

Difference: the gap between two terms

Orithmetic: a sequence where the difference between the terms is constant

Ш

Ш

Ш

11 Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero number

Describe and continue a sequence diagrammatically

Count the number of circles or lines in each image

!! Predict and check terms

Predictions:

Look at your pattern and consider how it will increase.

e.g. How many lines in pattern 67

Prediction - 13

If it is increasing by 2 each time - in 3 more patterns there will be 6 more lines

Sequence in a table and graphically

(the number of squares in each image)

The **term** in position 3 has 7 squares"

Graphicallu

Because the terms increase by the same addition each time this is **linear** — as seen in the graph

Position

Linear and Non Linear Sequences

Linear Sequences — increase by addition or subtraction and the same amount each time Non-linear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci

13

Do not plot as straight lines when modelled graphically

The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Sequence — look out for this type of sequence

Each term is the sum of the previous two terms.

Continue Linear Sequences

7, 11, 15, 19...

How do I know this is a linear sequence?

It increases by adding 4 to each term.

How many terms do I need to make this conclusion?

Ot least 4 terms — two terms only shows one difference not if this difference is constant. (a common difference).

How do I continue the sequence?

You continue to repeat the same difference through the next positions in the

Continue non-linear Sequences

1, 2, 4, 8, 16 ...

How do I know this is a non-linear sequence?

It increases by multiplying the previous term by 2 — this is a geometric sequence because the constant is multiply by 2

How many terms do I need to make this conclusion?

Ot least 4 terms — two terms only shows one difference not if this difference is constant. (a common difference).

How do I continue the sequence?

You continue to repeat the same difference through the next positions in the sequence.

Explain term-to-term rule How you *g*et from term to term

Try to explain this in full sentences not just with mathematical notation.

Use key maths language — doubles, halves, multiply by two, add four to the previous term etc.

To explain a whole sequence you need to include a term to begin at...

The next term is found by tripling the previous term. The sequence begins at 4.

YEAR 7 — ALGEBRAIC THINKING... **Olgebraic notation**

@whisto maths

What do I need to be able to

By the end of this unit you should be able to:

- Be able to use inverse operations and "operation families".
- Be able to substitute into single and two step function machines.
- Find functions from expressions.
- Form sequences from expressions
- Represent functions graphically.

Keywords

Function: a relationship that instructs how to get from an input to an output.

Input: the number/ sumbol put into a function.

Output: the number/ expression that comes out of a function.

Operation: a mathematical process

Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)

Commutative: the order of the operations do not matter.

Substitute: replace one variable with a number or new variable.

Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

Evaluate: work out

Linear: the difference between terms increases or decreases by the same value each time

Sequence: items or numbers put in a pre-decided order

Sinale function machines

Using letters to represent numbers

5+5+5	y + y + y + y	! 20 - h
3 x 5	y x 4	20
5 x 3	4 x y	$\frac{\overline{h}}{}$
0.114:	4y	
Oddition and multiplication can b	ne 🕇	20 shared into
done in any order Commutative calculat		'h' number of groups

Single function machines (algebra)

Find functions from expressions

Find the relationship between the input and the output

Sometimes there can be a number of possible functions e.g. +7x or x 2 could both be solutions to the above function machine

Substitution into expressions

If y = 7 this means the expression is asking for 4 'lots of' 7

4 x 7 OR 7 + 7 + 7 + 7 OR 7 x 4

e.a: u-27 - 2 = 5

Two step function machines

Two step function machines (algebra)

= 28

Substitution into an expression

torming a sequence

				. ———	
INPUT	l	2	3	The collection to the County of the	!!
OUTPUT	8	10	12	The substitution is the 'input' value The OUTPUT becomes the sequence	ij

Representing functions graphically

and the output becomes u co-ordinates

(2, 10) to plot on a graph

Not all graphs will be linear only those with an integer value for x. Powers and fractions generate differently shaped graphs

YEAR 7 — ALGEBRAIC THINKING

@whisto maths

Equality and Equivalence

What do I need to be able to do?

By the end of this unit you should be able

- .Form and solve linear equations
- Understand like and unlike terms
- Simplify algebraic expressions

ii Keywords

Equality: two expressions that have the same value

Equation: a mathematical statement that two things are equal

Equals: represented by '=' symbol — means the same

Solution: the set or value that satisfies the equation

Solve: to find the solution.

Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)

Term: a single number or variable

Like: variables that are the same are 'like'

Coefficient: a multiplicative factor in front of a variable e.g. 5x (5 is the coefficient, x is the variable)

Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

he sum on the left has the san

Solve one step equations (+/-)

There is more to this than just spotting the answer 42

Solve one step equations (x/+)

_ike and unlike terms

Like terms are those whose variables are he same

are **unlike** terms

the variables are NOT the same

Examples and non-examples

Equivalence

-42

Check equivalence by substitution e.a. m=10

5m	2 x 2m	7m - 3m
5 x 10	2 x (2x 10)	(7x 10) - (3x 10)
= 50	= 2 x 20 = 40	= 70 – 30 = 40

Equivalent expressions

4m

Collecting like terms \equiv symbol

The \equiv symbol means equivalent to. It is used to identify equivalent expressions

Collecting like terms

Only like terms can be combined

Common misconceptions

$$2x + 3x^{2} + 4x \equiv 6x + 3x^{2}$$

Olthough they both have the x variable x2 and x terms are unlike terms so can not be collected